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NONSTEADY UNIDIRECTIONAL DISCHARGE OF AN INSTANTANEOUSLY HEATED GAS
WITH CONSTANT FORCED FLOW FROM A CYLINDER

£. T. Bruk-Levinson, 0. G, Martynenko, and E. A. Romashko UDC 533.17:536.414

A numerical study is made of the ﬁroblem of unidirectional discharge of an in-
stantaneously heated gas from a half-open cylinder when the gas is pumped
through the cylinder in the direction of the open end.

Calculation of thermohydrodynamic fields in half-open systems is of considerable interest
for through-type electric-discharge quantum generators, where the uniformity of the medium
has a significant effect on the working parameters of the system.

Apart from the specifics of the design of the system, the essence of the hydrodynamic
process which accompanies the pressure jump in the working volume of the generator resulting
from the discharge can be remodeled by the classical problem of unidirectional discharge of
an instantaneously heated gas from a cylinder with one end open to the atmosphere under finite
pressure [1]. It was shown in the solution of this problem that the initial pressure jump is
accompanied by nonlinear oscillations of an amplitude which decreases slowly relative to the
characteristic time scale. "This result is in qualitative agreement with the test data ob-
tained in [2] on a rarefaction wave tube. The slow return of uniformity in a system based
on the principle of periodic~impulsive action when the only damping source is the local resis-
tance at the open end of the cylinder (the friction against the walls has almost no effect
on damping) stimulates searches for additional means of influencing the system parameters —
one of which may be pumping the gas through the cylinder.

The present article studies gasdynamic processes in a cylindrical volume., One end of
the cylinder is connected to the atmosphere. The gasdynamic processes are initiated by in-
stantaneous heating of a gas in some middle section of the cylinder. We will study how the
processes are affected by pumping the gas along the cylinder axis in the direction of the
open end.

As usual in the gasdynamics of rapidly occuring processes, we will assume that the phe-
nomena of viscosity, heat conduction, and external heat exchange have a slight effect on the
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characteristics of the process. Thus, we will describe it in a unidimensional approximation
on the basis of three differential equations: the equations of motion in the form of the
Euler equations, the continuity equations for a compressible gas, and the energy equations
without allowance for heat conduction. We will also use the equations of state of an ideal
gas.

We take the quantities L, do, Po, Po, L/do, and To, respectively, as the scales of
length, velocity, pressure, density, time, and temperature. We represent the complete system
of equations describing the nonsteady discharge process in dimensionless form [1]:
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This system must be augmented by initial conditions for u, p, and T and three boundary condi-
tions to link these three functioms.

The initial conditions for p and T are determined by the position and magnitude of the
pressure and temperature jumps in the heating zone. The initial value for the quantity u is
the flow velocity ups. We write these conditions in the form

u=tg, p=p, T=T for t=0, x5,
0L x<<xy, 2)

U=ty p=py, T =T, & =0,
o»P Po o for << 1.

At the open end the boundary condition for pressure is determined as the sum of the ex-
ternal pressure and the pressure loss due to the local resistance Ap = kEpu?®/2. Assuming
that the local-resistance coefficient £ during discharge into the atmosphere (as for steady
discharge) is equal to unity [3], we obtain

2
pzp(’]“—%—kp-%—_for £>0, x=1. (3)

The boundary condition for the closed end in the absence of through motion is assigned
exactly in the form of a zero velocity value u = 0 for x = 0. In the case of continuous
through motion of the gas in the cylinder with a certain constant velocity in the absence
of perturbations, the form of the boundary condition at the closed end will generally de-
pend on the method of organization of this motion. Here we are examining one of the pos-
sible forms of this boundary condition. Let a volume containing a working gas under a
sufficiently high constant pressure p* be connected at its end by a choke with a gasdynamic
resistance £ with a cylinder. The gas flow rate is assigned for the unperturbed state Q =
uoF. Assuming that the velocity in the volume ahead of the choke is equal to zero and using
p and u to designate the pressure and velocity of the gas after the choke in the cylinder,
we obtain the following relation on the basis of conservation of energy and momentum

2
p-}—Ekp-—%—-=p* for >0, x=0. (4)

The coefficient £ in Eq. (4) is assumed to be constant during discharge. We determine
its value from the condition of constancy of the flow rate Q = uoF for the gas in the cylin
der in the unperturbed state. Replacing p, p, and u in (4) with their values in the unper-
turbed state pe, Oos Mo = Q/F, we obtain

E=2(p* — Po)/(Pottd)- (5}

Thus, the problem of describing the gasdynamic processes occurring after the instanta-
neous heating of a gas in a certain region of a cylinder with continuous through motion of
the gas in the cylinder reduces to the solution of a system of first-order hyperbolic dif-



ferential equations with initial conditions (2) and boundary conditions (3), (4), which
should be augmented by temperature values at boundary points. Since the system of equations
and boundary conditions are nonlinear, the problem will be solved numerically. For this, in
accordance with the general theory of the solution of systems of hyperbolic equiations [4],
it is first of all necessary to replace system (1) by an equivalent system in invariant form
(not explicitly separating into two equations:of Riemann invariants) [5]
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R—1

=In(T/p * ). (7

The initisdl:and:boyndary conditions:for system (6) are_assigned in accordance with (2)-
(4). The boundary value for Z at u > 0 should be assigned on the left, i.e., for x = 0,
while the boundary value for Z at u < 0 should be assigned on the right, i.e., for x = 1.

In [1] the first two equations of (6) were written for the Riemann invariants

XY—uiSkVW

which, on the basis of the equation of state and Eq. (7), can be represented in the form

RtL
X,Y = uijexp(zmp ExTS

The integral in the invariants X and Y can be calculated if the invariant Z, proportional to
the entropy, is constant. This condition is satisfied in accordance with the last equa-

tion of system (6). It should be kept in mind, however, that the quantity Z undergoes a
discontinuity at the boundary of the contact surface; the values of Z on both sides of the
contact surface are constant but different, and the process is nonisentropic. The invariant

Z together with the contact surface is propagated in space with a characteristic velocity
equal to the velocity of the medium u. The invariants X and Y are propagated with charac-
teristic velocities ut o/ oywhich with the corresponding direction of u will be greater in ,
absolute value than the velocity of the medium u. This leads to a situation whereby the cor-
responding invariants will intersect the contact surfaces, where the above integral loses
meaning — since the invariant Z undergoes a discontinuity. For this reason the reverse tran-
sition from the invariants X and Y to the variable u and p requires that the factor exp (2/2),
undetermined in this position, be replaced by some mean value of the factor. This unavoidably
distorts the distribution of u and p near the contact surface. To avoid these difficulties,
here we write a finite-difference problem directly for system (6), without a preliminary
transition to invariants X and Y in the first two equations. It is understood in this case
that the derivatives of p and u must be approximated by difference relations satisfying the
condition of Curant, Friedrichs, and Levy [6, Sec. 24]. We introduce the notation

Vplp =exp(Z/2) p* ™V = a(Z, p) = a,
£ Vpp = kexp(—Z/2) p*/™ = B(Z, p) =B.

Now we change system (6) to the following form, excluding density from it on the basis
of the equation of state and Eq. (7) and allowing for (8)

(8)
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The initial and boundary conditions are assigned with Eqs. (2)-(4) and the corresponding
values of Z at one of the ends, depending on the direction of the velocity u.

We will use an explicit finite-difference scheme of approximation for the Eqs. of sys-
tem (9) to obtain the numerical solution. The scheme satisfies the convergence conditions
[6, Sec. 24]}. We will use a grid that is uniform with respect to x and t and has cells h =
Ax and 1 = At, respectively. There are N + 1 nodal points for x, including the boundary
points, where N = 1/h. The values of ¢ at the nodal peint (i, n) will be designated by
Qi =0 (xi, tn) =g (ih, nv).

Since the velocity characteristics of the third equation of (9) will change sign during
discharge, we should write two different schemes for its, corresponding to positive and nega-
tive directions of the velocity u. As a result we obtain

=z — —;——u (ZF —Z3),
1f wr>0(i=1,23 ..., N—1, N;n=0,12 .. )we prescribe 251 = In(Tolpl= ",
2 = 2 — = (22D,
if 4, <0(i=0,1,2, ..., N—1,n=0,1,2,..), we prescribe
zﬁ?‘ = l-n (To/ p8 1R (10)

In accordance with the convergence conditions, the derivatives with respect to the co-
ordinate in the first equation of system (9) (top sign) are approximated by difference rela-
tions in reverse, while those in the first are approximated by difference relations in the
forward direction. The corresponding finite-difference equations are written in the form
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Solving thisiisystem relative to the quantities u‘{ Pi , we obtain the following

three-point (with respect to i) difference relations:

n+1 n T nl n n 1 n n n
U; = U; — Uy | U — U; —Pi 2 i Pi— —_—
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T n n n n 1 n A n n
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(=128, ..., N—1n=01,2,..),
which allows us to successively find uitt, p?+l at all interior points of the interval (i=1,

1, 2, 3, 4oey N— 1). The values of the quantities at the points i=0, 1i=N must be deter-
mined by using boundary conditions 3), 4.

We will find the values of uft', pit! at the boundary point x=0 (i=0). For tt.lis, we
write Eqs. (11) at the point i=0. The right sides of the resulting equations ncontanm 5he
quantities ", p’: at the imaginary point i=-—1 in the form of the complex u”, - pZi/Bo.
Elimination of this complex from the two equations yields the relation

pg+l - ﬁg ug+l = ‘\’gy (12)
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Fig. 1. Pressure distribution along the cylinder for successive moments of time
during the initial stage of the process.

Fig. 2. Temperature distribution along the cylinder for successive moments of
time over 35 c.t.u.

where

1

n
0

T ] ,
vﬁ:p’&——ﬁﬁuﬁ—-—l;-ﬁﬁ(a3~—u5)[—uol-l- ui +

(0% — P ]+ﬂﬁf<uz>.

The second equation for pﬁ*ﬂ uﬁ*l will be written as follows on the basis of condition (4):

’ n—H 2
P+ Kol ‘—'““(uoz . 3

Excluding p§+1 from Eqs. (12), (13), we obtain a quadratic equation for u§+l. The positive
root of this equation has the form (the negative root has no meaning)

ugt = — (pr - VIR T 2k (0 — 7). (14)
kEpq .

The value of p§+l is found from (12) by substituting the quantity ul*l from (14) into it.

Similar reasoning allows us to use system (11), written for the point i=N, and boundary
condition (3) to obtain the values of u%"', pit' at the boundary point x=1 (i=N):

urz—{—l 1

Tkl

% + V(85— 2k (0o — v3) ),
PR Bt =k, @

where
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Fig. 3. Time dependence of pressure at point A of the cylinder (closed end).
The heating zone is in the middle of the cylinder (hatched region): a) with
constant motion of the gas in the cylinder at a velocity ue = 0.03) b) with
the medium at rest in the unperturbed state.

where

n n n n n 1 n n n n
Y = Pauy + P'ﬂl—% P (uy + o) [uzv — Uy_1— "[;',,;(PN*— pN——l)‘t — BN (uh).

Calculations were performed for the following numerical values of the quantities (in the
equations and the initial and boundary conditions):

x; =0.4; x,=0.86; k¥1.4; Uy =0.03; p*=4; p,= pz_—‘ To=1; py=T; =162 P1=pg= 1L

As in [1], the function f(u?) was determined from the following relation in our calcu-
lations

Fui) =1.97-1072[1 + 1.38 (pf 7 )~ **")(uf 2. (16)

The parameter o in the convergence condition of problem (10)-(15) at/h < 1 (the Curant,
Friedrichs, and Levy condition) is determined in the following manner as the_ highest value
of the three characteristic velocities during discharge: a = u; + v/p,/p, = 0.42 + /1.62 =
1.69. With this value of «, the convergence condition is written in the form T < 0.6h. All
of the calculations were performed with h = 0.0l and v = 0.005. The pressure distribution
in Fig. 1 was obtained with a greater accuracy with h = 0.002 and t = 0.001. The calculations
were performed on an "M-4030" computer. The results were printed out in the form of graphs
of the distribution of gasdynamic quantities (p, u, T) along x for successive moments of
time, with a certain time interval (there was usually 10 curves per figure). Here, we used
the graph-drawing program developed by S: I. Shabun.

Figure 1 shows the pressure distribution along the cylinder axis x for the initial stage
of discharge. The five curves in this figure correspond to successive moments of time reck-
‘oned from the beginning of the process in accordance with the relation ty = nAt, vhere n =
0, 1, 3, 5, 7, and 9 and At = 0.05 characteristic time units (c.tiu.), i.e., 1 c.t.u. = L/go.
The number 0 denotes the initial pressure distribution. Decay of the initial pressure jump
is accompanied by the appearance and propagatioh of perturbations in the form of rarefaction
waves and compression waves (weak shock waves). Rarefaction waves orginating from the boun-
dary points of the initial pressure jump x; and X, move toward each other with an intensity
half that of the initial pressure jump so that the "foot" of these waves is the "crest" of
the compression waves (their intensity is also half the initial jump), which propagate in
opposite directions from the points X, and x,. The interaction of the rarefaction waves at
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the midpoint of the segment (x;, Xa) (curve 3) results in a drop in pressure at this point
and the beginning of propagation of new rarefaction waves (curve 5) in opposite directions
relative to this point. The right-hand rarefaction wave meets the rarefaction wave moving
counter to it at about the point x,. The latter wave represents the reflection of the com=~
pression wave from the open end. The interaction of these waves leads to a pressure drop
at the point x; to a value below the pressure in the environment (curve 7 on the right).
The left half of the figure can be similarly explained. Figure 1 well illustrates the ad-
vantages of the method chosen here (compare it with Fig. la and c in [1]).

To explain the effect of through motion on the gasdynamic processes in the cylinder,
we perform calculations embracing the time interval from the beginning of the process to the
elapse of 35 c.t.u. The results were represented in the form of graphs of the pressure (and
temperature) distribution, similar to those shown in Fig. 1 (only 10 curves per figure), for
successive time intervals with At = 0.25 c.t.u. The calculations were performed for two
variants: 1) without through motion ue = 0; 2) with through motion at a velocity ue = 0.03
in the unperturbed state. The resulting distributions can be used to find the time depen-
dence of the gasdynamic quantities for any point of the cylinder. To this end, for a se-
quence of points on the axis t with the interval At = 0.25 c.t.u., we plotted values of p
representing points of intersection of the corresponding curves with.a vertical straight
line passing through a chosen point on the cylinder axis.

Figure 2 shows the temperature distribution along x for successive moments of time.
The initial temperature distribution is represented through zero. Curve 1 corresponds to
the moment of time from the beginning of the process to 0.9 c.t.u. All of the other curves
correspond to moment of time in c.t.u's which can be determined from the formula t; = (n — 1)
At + 0.9, where n is the number of the curve (n = 2, 3, ..., 8), At = 4.5 c.t.u. It is
apparent that the contact surfaces are shifted to the right and after about 35 c.t.u. the
left contact surface reaches the : position of the right bourddary of the inital temperature
jumpd This means that the heated medium is completely removed from the heating region.

Figure 3 shows the time dependence of the pressure at the closed end of the cylinder.
It is apparent that constant motion does not introduce any substantial changes in the char-
acter of decay of the perturbations, and the curves are somewhat different from those for
later times in the process only in structure. According to the curves of pressure distri-
bution along x which were used to plot the curves in Fig. 3, the minimum and maximum pres-
sures in the perturbations for the time ~35°c.t.u. are equal to 0.055 and 1.053 for a and
0.922 and 1.085 for b, respectively. The deviations of pressure from the normal value
relative to the initial jump are: a — 8%; b — 13%.

NOTATION

X, coordinate along the cylinder axis; t, time; u, velocity; p, pressure; p, density;
T, temperature; k, adiabatic exponent; @, speed of sound; X1, X2, boundary points of region
of initial pressure and temperature jump; ry, -hydraulic radius. Indices: O, quantities
outside the perturbation region; 1, initial values of quantities in the pressure and tempera-
ture jump. '
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